

Automatic generation control with nonlinear design of interconnected power system using optimization techniques

KunteRukmanRao¹, Raja Reddy Duvvuru², Rajesh Reddy Duvvuru³

PG scholar, Dept. Of EEE, JNTUA college of Engineering, Pulivendula, Kadapa(dt) A.P, India¹

Lecturer, Dept. Of EEE, JNTUA college of Engineering, Pulivendula, Kadapa(dt) A.P, India²

Assistant Professor, Dept. Of EEE, NARAYANA college of Engineering, Guduru, Nellore(dt) A.P, India³

Abstract: An electric power system comprises of generation, transmission and distribution of electric energy. To meet today's load demand different generations are interconnected via tie lines. This paper deals with AGC problem of a two area thermal system using Proportional-integral-derivative controller (PID). The controller parameters are tuned by using particle swarm optimization (PSO) and Many optimizing Liaisons (MOL) algorithms. Dynamic response of the PID controlled AGC tuned by both the algorithms are compared by applying 1% step load perturbation (SLP) in both areas at different conditions. The cost function is derived by taking the area control errors (ACE) of both the areas. The system is checked for robustness by varying the parameters of the governor, turbine and reheat from -50% to +50% in steps of 25%. Based on analysis, facts & figures the system is found to be robust and performs better when tuned by the MOL algorithm.

Keywords: Automatic Generation Control, Area control error, PSO and MOL algorithms, Matlab software.

I. INTRODUCTION

number of areas. For example, in our country, eastern grid, important works on tie line power and frequency control western grid both are connected as single grid for reliable, and tie line bias control in interconnected systems. control, and secured operation and each area are Mishra and Swapna Kumar jena [3] had discussed the interconnected among themselves through transmission simulation model of hybrid system i.e., hydro thermal lines, called tie-line.

Interconnected power system or power grid provides Differential evolutionary Algorithm and dynamics following advantages over the control area operated individually,

It stabilizes the grid which in turn increases [1] stability, reliability & security of the overall system.

Maintaining frequency to a fixed tolerance value [2] which reduces voltage collapse & chances of undesirable load-shed situation.

Earlier days, one generating unit in a system would be designed as the regulated unit & it was manually adjusted to Control the balance between the net generation & load demand. But now with automatic Generation system, many units are participated in regulation, improving overall system efficiency & economy. The main function of power system operation and control is to provide continuous power supply to all consumers connected to it. Automatic Generation control (AGC) regulates real power flow between different control areas while keeping [3] frequency constant.

The first attempt in the area of AGC has been to control In this paper, PID controllers are used to improve the the frequency of a power system via the governor of the dynamic performance of AGC of a two area thermal synchronous machine. This technique was subsequently found to be insufficient and a supplementary control was PSO and MOL algorithms to tune the parameters of the included to the governor with the help of a signal directly PID controllers in an interconnected system. In view of the proportional to the frequency deviation plus it's integral. above, the present work investigates the following aspects: This scheme constitutes the classical approach to the AGC i). To optimize the parameters of the conventional PID of power systems [1]. Cohn has done very early works in

Now-a-days, modern power systems are divided into this important area of AGC. Cohn [2] have presented basic

system. They developed a gain tuning of controller via performance of hybrid AGC with different controller strategies.

K. C. Divya et al [4] have discussed the simulation model of hydro-hydro systems. They showed that the difficulty in extending the traditional approach for such systems was overcome by assuming that all areas in a system operate at the same frequency. They obtained the model by ignoring the frequency difference between the control areas.

B.K Sahu and P.K. Mohanty [5] have discussed the modeling and comparative analysis of PID controller of Automatic Voltage Control system via Many Optimizing Liaisons.

The main features of AGC loops are

[1] Keeping frequency to its steady state value.

[2] To control power flow between interconnected control areas.

Maintain equal load distribution among the participating units.

system. The main aim of this work is the application of

controllers using PSO and MOL algorithms.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING Vol. 2, Issue 12, December 2014

ii) To compare the performance PSO and MOL optimized PID controlled AGC for two area interconnected thermal power system.

II. PROPOSED METHOD

In order to represent a basic simple model of an interconnected power system, in this work deal with two thermal areas of equal size of 1000MW consisting both reheat with governor dead band mechanism. The introduction of dead band makes the system to nonlinear.

In the design of PID controllers (two in number) for this work the six gains are selected in such a way that the desired response obtained of the closed loop system which refers that the system should have a minimum settling time and a very less value of overshoot as well as undershoots with less oscillations due to a 10% Step Load Perturbation as

$$U_{1} = ACE_{1}(K_{P1} + \frac{K_{I1}}{s} +)K_{D1}s$$
(1)

$$U_2 = ACE_2(K_{P2} + \frac{K_{12}}{s} +)K_{D2}s$$
 (2)

The value of Area Control Error is sum of bias factor and tie-line power deviation. The area control error in both areas consists of tie-line power error of the intermediate area and frequency error, given by

$$ACE_1 = B_1 + \Delta P_{TIE}$$
(3) f)

$$ACE_2 = B_2 + \Delta P_{TIE}$$
(4) g)

In this work, the constraint of setting the gains of PID controller is a major problem. Therefore, the PID gains should be in limits, i.e.,

$$\begin{array}{l} Kp_{min} \ \leq K_{p_i} \leq Kp_{max} \\ Ki_{min} \ \leq K_{i_i} \leq Ki_{max} \\ Kd_{min} \ \leq K_{d_i} \leq Kd_{max} \end{array}$$

Where I is the number of controller gains (here I = 2 due to two controllers).

 Kp_{min} , Ki_{min} and Kd_{min} are the minimum values of controller parameters and maximum allowable values of controller parameters are Kp_{max} , Ki_{max} and Kd_{max} Hence forth, in this work PID parameters are constrained within [0, 3].

of Area Control Error (ACE). In order to achieve this, the the MOL method is as follows: cost function J is taken as

$$J = \int_0^t [ACE_i^2] \cdot t \, dt \tag{5}$$

Where ACE
$$_{i}$$
 = Area control error of i^{th} area
T = simulation time.

III. Tuning algorithms used in the proposed work **III.I Particle Swarm Optimization Algorithm**

Particle Swarm Optimization (PSO), one of the latest meta-heuristic algorithms, was first introduced by Kennedy and Eberhartin 1995 for solving nonlinear and non-continuous optimization problems [6,7]. This algorithm uses particles which represent potential solutions of the problem. The basic principle of PSO is that it initializes a population of particles with randomness of both positions and velocities.

Subsequently, each particle adjusts its velocity dynamically corresponding to its flying experiences and its colleagues. The best previous position of the particle is recorded and represented as P best. The index of the best particle among all the particles in the group is represented by the G best. The updated velocity and position of each particle can be calculated as per following formulas

$$V_{i}^{(t+1)} = w. V_{i}^{t} + C1. \text{ rand } 1. (P_{\text{best}_{i}} - P_{i}^{t}) + c2. \text{ rand } 2. (G_{\text{best}_{i}} - P_{i}^{t} \quad (6)$$

$$P_{i}^{(t+1)} = P_{i}^{t} + V_{i}^{(t+1)} \quad (7)$$

$$P_i^{(t+1)} = P_i^t + V_i^{(t+1)}$$
(7)

Here w is the inertia weight parameter which controls the global and local exploration capabilities of the particle. 'C1' and 'C2' are acceleration constants and, 'rand1' and 'rand2' are random numbers between 0 and 1. In this study the values of C1 and C2 are taken as 2.05. At the end of the iterations, the best position of the swarm will be the solution of the problem. The basic steps of PSO algorithm is represented below:

Steps for PSO algorithm

b)

c)

d)

e)

Randomly, initialize the positions and velocities a) of each particle

- Update the position and velocity of each particle.
- Update the personal and global best.
- Find the velocity of a new particle using (6).
- Using (7) move the particle to a new position.
- Enforce search space boundaries.
- Update the particle's best position, if f(Vi) < f(P)g) best)

The above steps are repeated for swarm's best h) position f(G best)

III.II MOL ALGORITHM

In many optimizing liaisons (MOL) algorithm it is possible to simplify the PSO method somewhat by removing the use of an agent's own best known position from the velocity recurrence relation. This PSO variant is known here sometimes as the "social only" PSO [5]. The MOL method is studied most extensively in (3)(5).

Velocity Update

By setting the swarm's best position to zero in PSO algorithm, makes particle not to have any persistence in The main aim of tuning the system is minimizing the value the previously followed path, this gives velocity update for

$$V_i^{(t+1)} = w. V_i^t + c. rand(G_{best_i} - P_i^t)$$
 (8)

$$P_i^{(t+1)} = P_i^t + V_i^{(t+1)}$$
(9)

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING Vol. 2, Issue 12, December 2014

IV. RESULTS AND DISCUSSION

In order to optimize the gains of the PID controllers 100 iterations are considered for both PSO and DE algorithm. The upper and the lower limits for the controller's gains are respectively taken as 0.1 and 2.5. A small step load perturbation (SLP) of 1% is applied to both areas for studying the transient response of the PID controlled AGC. The optimum values of PID controller gains are depicted in table I.

TABLE I Optimum gains of PID controller of both areas tuned by PSO and MOL algorithms

Algorithm	PID controller gains for area-1		PID controller gains for area-2		ains for	
Parameters	Kp1	Ki1	Kd1	Kp2	Ki2	Kd2
PSO	2.3030	2.3399	1.9963	1.7643	1.4254	1.3597
MOL	1.1112	1.8311	1.4328	1.4251	2.2472	2.2194

TABLE II Settling time and peak overshoots of Δ F1, Δ F2 and Δ Ptie

Algorithm	Dynamic response					
Algorithm	Δ	ΔF1 ΔF2		ΔI	Ptie	
	Ts in	Osh in	Ts in	Osh in	Ts in	Osh in
	sec	p.u	sec	p.u	sec	p.u
PSO	28.99	-	22.35	-	23.46	-0.999
		0.9816		0.9836		
MOL	21.87	-	23.42	-	21.29	-0.999
		0.9819		0.9836		

From fig.2, fig.3 and fig.4 respectively shows the variations in Δ F1, Δ F2 and Δ Ptiefor both PSO and MOL algorithms and thus conculds that MOL has better transient behaviour over PSO algorithm.

 $Figure \ 3 \ \ Frequency \ deviation \ in \ area-I \\ \ Copyright \ to \ \ JIREEICE$

Figure 4 Tie Line power deviation

V.ROBUSTNESS ANALYSIS

Each thermal areas consists of non-linear governor with time constant, turbine with time constant and reheat with gain as & time constant . For robustness analysis all these parameters are varied from -50% to +50% in steps of 25% by applying 1% SLP in both areas. The controller gains obtained from PSO and MOL algorithm are used to study the robustness of the system.

Table III and Table IV shows the trasient response behaviour of interconnected system optimization using PSO algorithm.

TABLE III Settling time values for Δ F1, Δ F2 and Δ Ptie

Parameters	%age deviation	Ts for ΔF1 (in	Ts for ΔF2 (in	Ts for ΔPtie (in
		sec)	sec)	sec)
Tg	50%	22.01	23.65	21.67
	25%	22.28	23.51	21.87
	Normal	21.87	23.42	21.99
	-25%	22.28	23.51	21.87
	-50%	22.01	23.65	21.67
Tt	50%	22.29	24.35	22.02
	25%	22.42	27.85	22.25
	Normal	21.87	23.42	21.99
	-25%	22.19	24.68	2219
	-50%	22.37	23.68	21.97
Kr	50%	30	30	24.37
	25%	23.67	24.61	20.40
	Normal	21.87	23.42	21.99
	-25%	30	30	30
	-50%	29/.98	29.99	28.37
Tr	50%	19.53	22.33	15.11
	25%	14.17	14.43	14.57
	Normal	21.87	23.42	21.99
	-25%	12.24	1440	8.54
	50%	16.28	16.84	13.44

www.ijireeice.com

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING Vol. 2, Issue 12, December 2014

TABLE IV %Over Shoot for Δ F1, Δ F2 and Δ Ptie

Parameters	%age	%Osh	%Os	%Os for
	deviation	for	for	ΔPtie (in
		ΔF1 (in	ΔF2 (in	sec)
		sec)	sec)	
Tg	50%	-0.9918	-0.9924	-0.9909
	25%	-0.9928	-0.9939	-0.9907
	Normal	-0.9816	-0.9836	-0.999
	-25%	-0.9808	-0.9777	-0.9973
	-50%	-0.9782	-0.9782	-0.9972
Tt	50%	-0.9949	-0.9965	-0.99
	25%	-0.9950	-0.9966	-0.9902
	Normal	-0.9816	-0.9836	-0.999
	-50%	-0.9795	-0.9768	-0.9977
	-25%	-0.9839	-0.9809	-0.9979
Kr	50%	-0.9877	-0.9899	-0.9997
	25%	-0.9714	-0.9763	-0.9990
	Normal	-0.9816	-0.9836	-0.999
	-25%	-0.9113	-0.9822	-0.9922
	-50%	-0.9680	-0.9640	-0.9945
Tr	50%	-0.9882	-0.9893	-0.9923
	25%	-0.9902	-0.9903	-1.0
	Normal	-0.9816	-0.9836	-0.9999
	-25%	-0.9749	-0.9720	-0.9969
	-50%	-0.9746	-0.9719	-0.9967

Table V and Table VI respectively shows the transient behaviour of interconnected power system optimization using MOL algorithm.

From the tables the robustness analysis gives the idea of controlled operation of particular respective tuned PID gain values with a 1% step disturbance on both areas and we can restore the system into a new operating point with minimum deviation in ACE.

TABLE V Settling time values for Δ F1, Δ F2 and Δ Ptie

Parameters	%age deviation	Ts for ΔF1 (in sec)	Ts for ΔF2 (in sec)	Ts for ΔPtie (in sec)
Tg	50%	25.82	21.47	23.49
	25%	25.88	20.66	23.65
	Normal	28.99	22.35	23.46
	-25%	26.28	14.55	23.66
	-50%	25.92	21.18	23.18
Tt	50%	26.72	15.12	24.02
	25%	29.24	15.40	24.24
	Normal	28.99	22.35	23.46
	-25%	26.75	15.25	23.99
	-50%	27.63	14.99	23.55
Kr	50%	25.98	26.40	22.82
	25%	27.35	28.58	20.66
	Normal	28.99	22.35	23.46
	-25%	29.62	29.64	22.96
	-50%	30	30	30
Tr	50%	18.85	18.84	16.08
	25%	11.42	12.70	9.58
	Normal	28.99	22.35	23.46
	-25%	29.35	26.95	21.97
	50%	21.93	24.89	14.89

TABLE VI % Over Shoot calculation	for	$\Delta F1, \Delta F2$	2 and
Δ Drig			

Parameter	%age	%Osh for	%Os for	%Os for
s	deviation	Δ F1 (in sec)	ΔF2 (in	ΔPtie (in
			sec)	sec)
Tg	50%	-0.9884	-0.9918	-0.999
	25%	-0.9877	-0.9921	-0.9999
	Normal	-0.9819	-0.9868	-0.9993
	-25%	-0.9775	-0.9811	-0.9979
	-50%	-0.9750	-0.9785	-0.9969
Tt	50%	-0.9925	-0.9939	-0.9989
	25%	-0.9931	-0.9940	-0.9979
	Normal	-0.9819	-0.9868	-0.9993
	-25%	-0.9809	-0.9832	-0.9976
	-50%	-0.9768	-0.9797	-0.9975
Kr	50%	-0.9818	-0.9860	-0.9995
	25%	-0.9644	-0.9688	-0.9975
	Normal	-0.9819	-0.9868	-0.9999
	-25%	-0.9217	-0.9848	-0.9919
	-50%	-0.9637	-0.9678	-0.9942
Tr	50%	-0.9815	-0.9868	-0.9995
	25%	-0.9837	-0.9898	-0.999
	Normal	-0.9819	-0.9869	-0.9999
	-25%	-0.9718	-0.9751	-0.9968
	-50%	-0.9714	-0.9748	-0.9966

VI. CONCLUSION

The objective of this paper is to obtain the optimum values of PID controller parameters using Many Optimization Liaisons as well as Particle Swarm Optimization algorithm for an AGC of an two area interconnected system. The performances of the proposed algorithms were compared. The results obtained from the simulation studies show that the MOL tuned system achieves better dynamic performance. From the study it can be concluded that PID controlled AGC for the two or multi area interconnected system tuned by MOL algorithm gives acceptable and reliably manage the frequency and tie line power deviations in comparatively better and faster way as compared with PSO algorithm.

REFERENCES

- Siva Nagaraju., "Power system operation and control" ,Pearson [1] Publications.
- Cohn N. "Some aspects of tie-line bias control on interconnected [2] power systems". Am Inst Elect Eng Trans 75 (1957) 1415-36.
- Prof J Nanda, Dr. M L Kothari, "Sample data AGC of Hydro-[3] Thermal system considering GRC", IEEE-trans., September 21,1989.
- K C. Divya et al "The simulation model of hydro-hydro systems" [4] IJTPE vol 5 December 2013.
- [5] B K Sahu, P K Mohanti, "Design and comparative performance analysis of PID controlled AVC by MOL", IEEE conference. april 2012.
- [6] Particle Swarm Optimization. Kennedy, J. and Eberhart, R. Perth, Australia: IEEE International Conference on Neural Networks, 1995
- A Modified Particle Swarm Optimizer. Shi, Y. and Eberhart, R. [7] Anchorage, AK, USA: IEEE International Conference on Evolutionary Computation, 1998.

BIOGRAPHIES

Mr.Kunte RumanRao, was born in 1990. He received B.Tech Electrical and Electronics Engineering from JNTUA, Anantapur, in 2011 and pursuing M.Tech(Electrical power system) from JNTUA, Pulivendula, A.P. His research area includes power system operation and control, and its application.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING Vol. 2, Issue 12, December 2014

Mr. Raja Reddy Duvvuru, was born in 1988. He presently lecturer in Electrical and Electronics Department in JNTUA, Pulivendula, and he is received Master Degree in Electrical Power Engineering (EPE)from SITAMS, Chittor, in 2011 and

pursing his Ph.D in JNTUA, Anantapur, A.Pin the area of Power quality improvement. His research area includes Power quality and FACTS controller.

Mr. Rajesh Reddy Duvvuru, was born in 1988. He presently Assitant Professor in Electrical and Electronics Department in NEC, Guduru, and he is received Master Degree in Energy system Engineering (ESE)from JNTU, Anantapur, in 2011 His

research area includes Solar energy systems and its applications.